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Abstract. In this paper, the bifurcation problem of void formation and growth in a solid circular cylinder, com-
posed of an incompressible, transversely isotropic hyper-elastic material, under a uniform radial tensile boundary
dead load and an axial stretch is examined. At first, the deformation of the cylinder, containing an undetermined
parameter-the void radius, is given by using the condition of incompressibility of the material. Then the exact
analytic formulas to determine the critical load and the bifurcation values for the parameter are obtained by
solving the differential equation for the deformation function. Thus, an analytic solution for bifurcation problems
in incompressible anisotropic hyper-elastic materials is obtained. The solution depends on the degree of anisotropy
of the material. It shows that the bifurcation may occur locally to the right or to the left, depending on the degree
of anisotropy, and the condition for the bifurcation to the right or to the left is discussed. The stress distributions
subsequent to the cavitation are given and the jumping and concentration of stresses are discussed. The stability of
solutions is discussed through comparison of the associated potential energies. The bifurcation to the left is a ‘snap
cavitation’. The growth of a pre-existing void in the cylinder is also observed. The results for a similar problem in
three dimensions were obtained by Polignone and Horgan.

Key words: bifurcation, comparison of energy, incompressible hyper-elastic material, jumping and concentration
of stress, transversely isotropic cylinder

1. Introduction

Void formation and growth in solid materials due to the instability of materials play a fun-
damental role in the mechanisms of fracture and failure of materials. In recent years, macro-
molecular materials such as polyurethane are achieving a more and more important status
in materials research and used in almost all fields of modern science. This is why nonlin-
ear problems of void formation and growth in hyper-elastic materials have attracted much
attention.

In 1958, Gent and Lindley [1] observed the sudden formation of voids in hyper-elastic
materials in their experimental work on rubber cylinders. In 1982, Ball [2] modelled the
sudden formation of a void in hyper-elastic materials (once a critical load is attained) as a
class of bifurcation problems in the nonlinear theoretical investigation in solid mechanics.
Bifurcation problems of void formation and growth, both for incompressible and compressible
materials, were carried out. For general incompressible hyper-elastic materials an explicit
formula to determine the critical load was given and for compressible hyper-elastic materials,
a qualitative analyses was given. Ball [2], Horgan and Abeyaratne [3], Sivaloganathan [4] gave
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an alternative interpretation of cavitation in terms of the sudden rapid growth of a pre-existing
micro-void.

Chou-Wang and Horgan [5] studied void nucleation and growth for some kinds of in-
compressible materials. For hyperelastic materials, cavitation solutions do not always ex-
ist. For example, cavitation cannot occur in a Mooney-Rivlin material. Horgan and Abe-
yaratne [3], Sivaloganathan [4], Stuart [6], Meynard [7], Horgan [8], Shang and Cheng [9,
10], Podio-Guidugli et al. [11] and Hao [12] studied the bifurcation problem for compress-
ible hyper-elastic materials. Qualitative analyses regarding existence, uniqueness and stabil-
ity of cavitation solutions were established and some results given. In a recent paper [13],
Horgan and Polignone reviewed bifurcation problems for radially symmetric cavitation for
hyper-elastic materials, which may be homogeneous and isotropic or inhomogeneous and
anisotropic, incompressible or compressible. It also gives an extensive list of references.

For other aspects of cavitation problems, Horgan and Pence [14, 15] studied the effects of
material inhomogeneity on bifurcation problems for incompressible materials. They obtained
cavitation solutions for a sphere composed of two materials and showed bifurcation to occur
locally either to the right or to the left. Sivalogananthan [16], Antman and Negron-Marrero
[17], Polignone and Horgan [18, 19] studied the effect of material anisotropy on the formation
and growth of voids for incompressible hyper-elastic materials. In [18], the authors obtained
an analytic solution for a transverse isotropic sphere composed of a neo-Hookean material
and showed bifurcation occurs either to the right or to the left. Generalization to the case of
composite anisotropic materials was given in [19].

The purpose of the present paper is to further investigate the bifurcation problem for the
formation and growth of voids for incompressible anisotropic hyper-elastic materials. The
bifurcation problem for a circular cylinder, composed of an incompressible anisotropic Ogden
material with transverse isotropy about the radial direction, under a uniform radial tensile
dead-load and axial stretch is investigated. From the condition of incompressibility of the
material, the radially symmetric deformation function of the problem is given by means of an
undetermined parameter describing the growth of the cavity.

An exact analytic relation between the parameter, the load, as well as an explicit formula
to determine the critical load are obtained by solving the differential equation satisfied by
the deformation function. Thus, a new analytic solution for the bifurcation problem of void
formation and growth for an incompressible anisotropic hyper-elastic material is obtained
following the work of Polignone and Horgan [18]. The solution depends on the degree of
anisotropy of the material. When the load exceeds a critical value, there exist homogeneous
and cavitation solutions and the cavitation solutions bifurcate from the homogeneous solution
at the critical load.

The relations between the critical load and the axial stretch, the degree of anisotropy of
the material and the material parameter are discussed in detail. The bifurcation curves are
obtained from numerical calculations based on the analytic solution. Different from the result
obtained for isotropic materials, the bifurcation may here occur locally to the right or to the
left and the relevant condition depends on the degree of anisotropy of the material. A similar
result was presented by Polignone and Horgan [18].

The stress distributions subsequent to the cavitation are analyzed, and the jumping and
concentration of stresses as well as the effect of the degree of anisotropy on the stress dis-
tributions are all observed. The stability of solutions is discussed through a comparison of
associated potential energies. The potential energy associated with the cavitation solution is
always lower than that associated with the homogeneous solution for the bifurcation to the
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right, so the cavitation solution is stable and the radius of the void is continuously increasing
from zero. The potential energy associated with the cavitation solution for the bifurcation to
the left is more complex; a cavity with a finite radius may suddenly appear at the critical load
and so the bifurcation to the left is a ‘snap cavitation’.

The condition for the bifurcation to the right or to the left is discussed from the bifurcation
curves and the energy curves. It is shown that the bifurcation condition depends on the degree
of anisotropy of the material and there exists a critical value for the degree of anisotropy.
When the degree of anisotropy is less than the critical value, the bifurcation is to the right and
when the degree of anisotropy is larger than the critical value, the bifurcation is to the left.

Finally, the sudden growth of a pre-existing void in the center of the cylinder is observed.
The growth character of the pre-existing voids also depends on the degree of anisotropy of the
material. When the degree of anisotropy is less than the critical value, the growth of the void
is continuous and when the degree of anisotropy is larger than the critical value, the growth of
the void is discontinuous with a ‘jump’.

2. Formulation for the problem

Consider here the finite deformation of a solid circular cylinder with radius b, composed of
an incompressible anisotropic Ogden material with a transversely isotropy about the radial
direction. Assume that the cylinder is subjected to a uniform radial tensile dead-load p0 on
its boundary surface R = b and an axial stretch or compression λ3. The undeformed and the
deformed configurations are described by the cylindrical coordinate systems (R,�,Z) and
(r, θ, z), with the origin at the center of the cylinder, respectively. Assume that the deformation
function of the cylinder is radially symmetric, namely,

r = r(R) > 0, θ = �, z = λ3Z, (1)

where r(R) is an undetermined function. The deformation gradient tensor is given as

F = diag (ṙ(R), r(R)/R, λ3) = diag(λR, λ�, λZ) (2)

in which, λR, λ�, λz are the principal stretches given by

λR = ṙ(R) = dr

dR
, λ� = r(R)

R
, λZ = λ3. (3)

The corresponding right and left Green-Cauchy deformation tensors are

C = B = diag
(
ṙ2(R), r2(R)

/
R2, λ2

3

)
. (4)

The strain-energy function of the incompressible anisotropic Ogden material with a trans-
verse isotropy about the radial direction is given as [18, 20, 21]

W = µ

α

[(
λαR + λα� + λαZ − 3

) + af (I4, I5)
]

(5)

in which µ and α are material parameters; a is a dimensionless parameter measuring the
degree of anisotropy of the material and when a = 0, the material is isotropic. The invariants
I4 and I5 are given by

I4 = C2
12 + C2

13, I5 = C11. (6)
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It is easy to obtain I4 ≡ 0 from the deformation tensor (4). So the function f in (5) only
depends on I5, that is, f = f (I5). From the normalization condition for the strain energy
function W = W(λR, λ�, λZ, I4, I5), we have [18]

W(1, 1, 1, 0, 1) = 0,
∂W

∂I5
(1, 1, 1, 0, 1) = 0.

We may now choose the representation for f (I5) as f (I5) = I 3
5 − 3I5 + 2 and, in this case,

(5) may be rewritten as

W = µ

α

[(
λαR + λα� + λαZ − 3

) + a
(
λ6
R − 3λ2

R + 2
)]
. (7)

The corresponding Cauchy-stress components are

τrr(R) = λR
∂W

∂λR
− p(R), τθθ (R) = λ�

∂W

∂λ�
− p(R), τzz(R) = λZ

∂W

∂λZ
− p(R) (8)

in which p(R) is the undetermined hydrostatic pressure.
The equilibrium equation for the cylinder in the absence of body forces is

dτrr
dR

+ ṙ(R)

r(R)
[τrr − τθθ ] = 0. (9)

The boundary condition at the outer edge (R = b) is

τrr(b) = p0

[
b

λ3r(b)

]
, (10)

where p0 > 0 is the prescribed dead-load and λ3 > 0 is the prescribed axial stretch or
compression. When a cavity forms, the boundary condition of the cavity surface should be

lim
R→0+ r(R) = c > 0, lim

R→0+ τrr(R) = 0. (11)

Now, the problem is to seek the deformation function (1) and stress components (8), so
that the equilibrium equation (9), the boundary conditions (10) and (11) are all satisfied for
the given dead-load p0 > 0 and axial stretch or compression λ3 > 0 with a given strain-energy
function (7).

3. Analytic solution

From the incompressibility condition of the material, namely, J = DetF = 1, and from (2),
we have

λ3ṙ(R)
r(R)

R
= 1. (12)

Integrating (12), we have

r(R) =
(
R2

λ3
+ c2

)1/2

, (13)

where c (the radius of the void) is an undetermined parameter. Let
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ν = ν(R) = λ� = r(R)

R
=

(
1

λ3
+ c2

R2

)1/2

. (14)

We have

ṙ(R) = λR = λ−1
3 ν

−1. (15)

So the strain-energy function (7) can be written as

W = µ

α

[
λ−α

3 ν−α + να + λα3 + 3)+ a(λ−6
3 ν

−6 − 3λ−2
3 ν

−2 + 2)
]
. (16)

The Cauchy-stress components are now given as

τrr(R) = µλ−α
3 ν−α + 6µaα−1λ−6

3 ν
−6 − 6µaα−1λ−2

3 ν
−2 − p(R),

τθθ (R) = µνα − p(R), τzz(R) = µλα3 − p(R).
(17)

Thus, the problem reduces to seeking the pressure function p(R) and a parameter c, for
a given dead-load p0 > 0 and axial stretch or compression λ3 > 0, so that the equilibrium
equation (9), the boundary conditions (10) and (11) are all satisfied. If c > 0, a void will form
at the center of the solid cylinder and, if c = 0, the solid cylinder remains solid.

It is easy to show that the problem always has a trivial solution for all values of p0 and λ3,
that is,

p(R) = µ− p0, c = 0 . (18)

The trivial solution corresponds to the identity deformation states, namely, r(R) = R. So
the cylinder retains its undeformed state, but there is a homogeneous stress state, that is,
τrr = τθθ = τzz = p0.

In order to seek the cavitation solution for c > 0, substituting (17) in (9) and using the
variable transformation r(R) = Rν(R), we may rewrite the equilibrium equation as

d

dR

[
µλ−α

3 ν−α + 6µaα−1λ−6
3 ν

−6 − 6µaα−1λ−2
3 ν

−2 − p(R)
]

+ ν−2

λ3R
(µλ−α

3 ν−α + 6µaα−1λ−6
3 ν

−6 − 6µaα−1λ−2
3 ν

−2 − µνα) = 0.

Integration yields

p(R)− p(0) = µλ−α
3 ν−α + 6µaα−1λ−6

3 ν
−6 − 6µaα−1λ−2

3 ν
−2 + J (R), (19)

where

J (R) = µλ−1
3

R∫
0

(
λ−α

3 ν−α−2 + 6aα−1λ−6
3 ν

−8 − 6aα−1λ−2
3 ν

−4 − να−2) ds

s
. (20)

Substituting (19) in (17), we obtain the stress component

τrr(R) = −p(0)− J (R). (21)

Using (21) and J (0) = 0 and (11), we obtain p(0) = 0. Finally, from (21) and the boundary
condition (10), we have
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Figure 1. pcr ∼ a curves. Figure 2. pcr ∼ λ3 curves.

p0 = −λ3ν(b)J (b). (22)

Using (14) and observing its derivative relation
dR

R
= ν

λ−1
3 − ν2

dν, we arrive at

p0 = µ

(
1

λ3
+ c2

b2

)1/2




∞∫
(

1
λ3

+ c2

b2

)1/2

λ−α
3 ν−1−α + 6aα−1λ−6

3 ν
−7 − 6aα−1λ−2

3 ν
−3 − να−1

λ−1
3 − ν2

dν


 .

(23)

Expression (23) is an exact analytic relation between the cavity radius c and the applied
dead-load p0 and axial stretch or compression λ3. One can see that the solution not only
depends on the material parameters µ and α, as well as the geometric dimension b of the
cylinder, but also on the parameter a measuring the degree of anisotropy of the material. For
a given dead-load p0 and axial stretch or compression λ3, the parameter c corresponding to
various values of a and α may be obtained from (23). If there exists a positive root c > 0 for
(23), this means that a void forms in the solid cylinder.

The corresponding principal stresses are

τrr(R) = −J (R),
τθθ (R) = µνα − µλ−α

3 ν−α − 6µaα−1λ−6
3 ν

−6 + 6µaα−1λ−2
3 ν

−2 + τrr (R).
(24)

Letting c → 0+ in (23), we observe that the critical load pcr at which an internal void will
form is given as

pcr = µ

√
1

λ3

∞∫
√

1
λ3

λ−α
3 ν−1−α + 6aα−1λ−6

3 ν
−7 − 6aα−1λ−2

3 ν
−3 − να−1

λ−1
3 − ν2

dν. (25)

Numerical evaluation of (25) yields the critical-load value pcr for given values of the para-
meters a and α. In Figure 1 and Figure 2, the curves pcr vs. a and pcr vs. λ3 for various values
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Figure 3. Bifurcation and growth curves for α = 0·1 Figure 4. Bifurcation and growth curves for α = 2·
and α = 1·8. and α = 1·4.

of α are shown. To ensure the existence of pcr, the material parameter α should be less than 2
(In fact, if α ≥ 2, the value of pcr will be infinite.). It shows that the critical load pcr increases
with increasing a and the minimum is attained at a = 0, that is, the material is isotropic. It
also shows that the critical load pcr increases with increasing α but decreases with increasing
λ3. That is to say, an axial stretch λ3 > 1 leads to the formation of a void under a radial tensile
dead-load.

4. Bifurcation and stress distribution

If p0 < pcr, there is a unique solution of (23), that is, c = 0, so the problem only has the
trivial solution. If p0 ≥ pcr, there is also a solution of (23) with c > 0, apart from c = 0.
So there exist cavitation solutions bifurcating from the trivial solution at the critical value pcr.
The subsequent growth of the cavity can also be found from (23). In the cases of a = 0·1 and
α = 0·8 and a = 2·0 and α = 1·4 (assuming λ3 = 1 for convenience), the bifurcation curves
obtained from (23) are shown in Figures 3 and 4, respectively. In the case shown in Figure 3,
the bifurcation is locally to the right and in the case shown Figure 4, it is locally to the left.
It can be seen from Figures 3 and 4 that the cavity in the cylinder suddenly appears, once
the load p0 attains its critical value pcr and subsequently the cavity grows rapidly. One can
also see that the bifurcation may here occur locally either to the right or to the left, depending
on the degree of anisotropy of the material. This is different from the situation for isotropic
materials (see [18]).

Curves for the radial displacement u(R) = r(R)− R for different values of p0 are shown
in Figure 5 when λ3 = 1. When p0 < pcr, though the cylinder undergoes a homogeneous
stress state, it remains undeformed. When p0 ≥ pcr, a cavitating deformation bifurcates from
the undeformed state. The displacement of the cylinder decreases with increasing R.

When p0 ≥ pcr, the principal stresses obtained from (24) are shown in Figures 6 and 7 for
a = 0·1 and α = 1·8, respectively. It can be seen that the radial stress τrr is zero at the cavity
surface and increases rapidly with increasing radius R and approaches an asymptotic value in
the region far from the cavity. On the other hand, the circumferential stress τθθ is infinite at the
cavity surface and decreases rapidly with increasing R and approaches an asymptotic value in
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Figure 5. u ∼ r
b

curves for α = 0·1 and α = 1·8. Figure 6. τrr ∼ R
b

curves for α = 0·1 and α = 1·8.

the region far from the cavity. At the same time, τrr decreases with increasing dead-load p0,
but τθθ increases with increasing dead-load p0. The asymptotic value of τrr may be close to the
asymptotic value of τθθ in the region far from the cavity, but the inequality τθθ (R) > τrr(R)

is always true for c > 0.
The stresses corresponding to the trivial solution are given by the homogeneous state of

stress τrr = τθθ = τzz = p0 when p0 < pcr. Thus, when a cavity is formed at p0 = pcr,
the stresses undergo an obviously catastrophic transition from the homogeneous distribution
to the non-homogeneous distribution. In fact, as shown in Figure 8, the radial stress τrr and
the circumferential stress τθθ jump from p0 to zero and from p0 to infinity at the surface of
the cavity, respectively. From the figures, one can also see that there obviously exist the stress
concentration phenomenon for the circumferential stress τθθ near the region of the cavity.
As shown in Figure 9, the concentration factor of τθθ is infinite at the surface of the cavity
and decreases rapidly with increasing R and is close to an asymptotic value, slightly larger
than 1·0, in the region far from the cavity. This implies that the stress concentration is a
local phenomenon, but this is just the reason for the sudden appearance of the cavity and its
subsequent rapid growth.

5. Comparison of potential energies

From the above analysis, one can see that, in the case of a = 0·1 and α = 1·8, the cavitated
bifurcation occurs locally to the right when p0 ≥ pcr, so there are two equilibrium solutions.
For a = 2·0 and α = 1·4, the cavitated bifurcation occurs locally to the left, so there are three
equilibrium solutions when pn < p0 < pcr (in which (cn, pn) is the knee on the bifurcation
curve shown in Figure 12) but there are two equilibrium solutions when p0 ≥ pcr. In order to
determine the stability of the solutions, including the trivial and the cavitation solutions, it is
necessary to compute and compare the potential energies corresponding to the solutions. The
total potential energy of the cylinder subjected to a dead-load p0 is given as

E =
∫
V

WdV −
∫
A

p0(r(b)− b)dA = 2π

b∫
0

RWdR − 2πbp0(r(b)− b). (26)
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Figure 7. τθθ ∼ R
b

curves for α = 0·1 and α = 1·8. Figure 8. Stress jumping at cavity surface.

Figure 9. K ∼ R
b

curves. Figure 10. Energy curve for a = ·1 and α = 1·8.

It is clear that the potential energy for the trivial solution is equal to zero, namely, E(0) = 0.
For the cavitation solution, the potential energy is given as

E(c) = 2πc2

∞∫
(

1
λ3

+ c2

b2

)1/2

[
µ

α
(λ−α

3 ν−α+1 + να+1 + λα3ν − 3ν)

+a(λ−6
3 ν

−5 − 3λ−2
3 ν

−1 + 2ν)

]
1

(λ−1
3 − ν2)2

dν − 2πb2p0

[(
1

λ3
+ c2

b2

)1/2

− 1

]
.

(27)

For a = 0·1 and α = 1·8 or a = 2·0 and α = 1·4, the numerical results obtained from (27)
are shown in Figures 10 and 11, respectively. One can see from Figure 10, that E(c) is always
less than E(0), so the cavitation solution is stable when p0 ≥ pcr. From Figure 11, E(c) is
larger than E(0) for 0 < c < cn and is a monotonically increasing function of c which attains
its maximum at c = cn. For cn < c <g, in which (cg, E(cg)) is a point on the energy curve
at which E(cg) = 0, E(c) is larger than E(0) and is a monotonically decreasing function of
c. For c > cg, E(c) is less than E(0) and is a monotonically decreasing function of c. So for
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Figure 11. Energy curve for a = 2·0 and α = 1·4. Figure 12. Stability of solutions for a = 2·0 and

α = 1·4.

a = 2·0 and α = 1·4, the cavitation solution is stable when c > cg . Thus, the cavity with
radius c suddenly appears in a discontinuous fashion when p0 > pg, that is, the bifurcation is
a ‘snap cavitation’. The stability of the solution is shown in Figure 12 as a = 2·0 and α = 1·4.

6. Bifurcation condition

To sum up, we have seen that the cavitated bifurcation for the cylinder may occur locally
either to the right or to the left, depending on the degree of anisotropy of the material. Now
we try to discuss the condition for bifurcation to occur to the right or the left following the
bifurcation and energy curves.

As is shown by the bifurcation curves in Figures 3 and 4, it is possible for bifurcation to
occur to the right when p0 > pcr and it is possible to occur to the left when p0 < pcr for
infinite small c. As p0 = p0(a) may be obtained from (23) and pcr = pcr(a) may be obtained
from (25), the critical value of a may be obtained from the equation p0(a) − pcr(a) = 0 for
infinite small c and acr = 0·215. Thus, we come to conclusion: the bifurcation is to the right
if a < acr and it is to the left if a > acr.

From the energy curves in Figures 10 and 11 and the bifurcation curves in Figures 3 and 4,
the right bifurcation may occur when E(c) < E(0) and the left bifurcation may occur when
E(c) > E(0) for infinite small c. Now E = E(a) may be obtained from (27) and the critical
value of a may be obtained from the equation E(a) = E(0) = 0 for infinite small c and the
value acr = 0·215 is consistent with the result obtained above.

7. Growth of a pre-existing void

Consider now a hollow cylinder with inner and outer radii d and b, subjected to a prescribed
uniform radial dead-load on the boundary and an axial stretch. The Equations (1–17) discussed
above may be used here, provided that the inner boundary condition (11) becomes

τrr(d) = 0. (28)
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All the other equations now hold on the interval d ≤ R ≤ b.
By using a similar analysis, we can get an exact analytic solution as follows:

p0 = µ

(
1

λ3
+ c2

b2

)1/2




(
1
λ3

+ c2

d2

)1/2∫
(

1
λ3

+ c2

b2

)1/2

λ−α
3 ν−1−α + 6aα−1λ−6

3 ν
−7 − 6aα−1λ−2

3 ν
−3 − να−1

λ−1
3 − ν2

dν


 .

(29)

For a given value of p0, we can get the corresponding constant c from (29). The solution
c > d describes the growth of the pre-existing void (with undeformed radius d) in the cylinder.
The numerical results given by (29), describing the growth of the pre-existing voids with
different values of d, are, respectively, shown in Figures 3 and 4 for a = 0·1 and α = 1·8, as
well as a = 2·0 and α = 1·4. As shown, the radius of the pre-existing void changes slowly,
even if p0 increases when p0 is much less than pcr, but the radius experiences a sudden rapid
increase when p0 reaches a certain value (less than pcr), depending on the parameters a and
d/b. For a = 0·1 and α = 1·8, the growth of the void radius is continuous, but for a = 2·0
and α = 1·4, the growth is discontinuous and a jump may occur. Thus, the bifurcation model
can be interpreted as describing sudden rapid growth of a pre-existing micro-void as was first
shown in [3].

8. Effect of f (I5)

We can see that f (I5) in the strain energy function W satisfying the normalization condition
may have many different forms, such as f (I5) = I 2

5 −2I5+1 (see [18]) or f (I5) = I 4
5 −4I5+3

and so on. For different forms of f (I5), the corresponding formulae should be changed. For
example, the formula (25) for the critical load in the former case of f (I5) is

pcr = µ

√
1

λ3

∞∫
√

1
λ3

λ−α
3 ν−1−α + 4aα−1λ−4

3 ν
−5 − 4aα−1λ−2

3 ν
−3 − να−1

λ−1
3 − ν2

dν (30)

The numerical results obtained from (30) are shown in Figure 1 (the scatter curves). It is
clear that the results are different from each other for a > 0. In fact, the different form of
f (I5) represents different materials and the result should be different.

9. Conclusion

The bifurcation problem of void formation and growth for incompressible, transversely iso-
tropic hyper-elastic materials under a uniform raial tensile boundary dead-load p0 and an
axial stretch λ3 has been studied. For all values of p0 and λ3, one solution corresponding to a
trivial homogenous state in which the cylinder remains undeformed always exists. However,
for sufficiently large values of p0 (when p0 is larger than its critical value), another solution
involving a suddenly formed cavity bifurcates form the trivial solution. In contrast to isotropic
materials, bifurcation was shown to occur locally either to the right or to the left, depending
on the degree of anisotropy of the material is less than its critical value of the degree of
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anisotropy. When the degree of anisotropy of the material. There exists a critical value, the
bifurcation is to the right and when the degree of anisotropy of the materials is larger than
its critical value, the bifurcation is to the left. Through comparison of the associated potential
energies, the cavitation solution is shown to be stable and the trivial solution is unstable. It has
been shown that an axial stretch λ3 > 1 can cause void formation. The phenomena of stress
jumping and concentration have been discussed along with the stress distributions subsequent
to the cavitation. The growth of a pre-existing void in the material for the bifurcation to the
right or to the left had different characteristics. For different forms of f (I5) in anisotropic
materials, the corresponding results are also different.

In conclusion, it is apparent that, despite the considerable progress what have bee obtained,
many problems in connection with the modeling and analysis of cavitation-phenomena prob-
lems in hyper-elastic materials still remain to be resolved. In comparison with incompressible
materials, it is more difficult to obtain an analytic solution for compressible materials, because
some equations involve the incompressibility condition. Our interest is to solve the corre-
sponding problems for compressible materials. We also intend to consider similar problems
in elastodynamics for hyperelastic materials.
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